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Dynamic stability of spindles controlled by molecular
motor kinetics
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Abstract – We analyze the role of the force-dependent kinetics of motor proteins in the stability
of antiparallel arrays of polar filaments, such as those in the mitotic spindle. We determine the
possible stable structures and show that there exists an instability associated to the collective
behavior of motors that leads to the collapse of the structure. The agreement of our results and
several experimental observations in eukaryotic cell division suggests an important role of kinesin-5
motors and microtubule bundles in the stability of the mitotic spindle.
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Living cells display several structures that arise from the
self-organization of polar filaments and motor proteins [1].
Several in vitro studies have shown that mixtures of
kinesin motors and microtubules (MTs) can spontaneously
develop complex spatio-temporal patterns [2]. These self-
organization processes are essential for eukaryotic cell
division [3]. During mitosis, motor proteins organize MTs
in a bipolar structure, the mitotic spindle, which serves as
a scaffold to transmit the necessary forces for chromosome
segregation [4]. The mitotic spindle consists of two MT
asters that overlap in the central region, with their
minus ends located at the aster poles crosslinked by
many different motor proteins [3,5]. One particular type
of motors, the plus-ended bipolar kinesins (e.g., Eg5 or
Klp61F), has been shown to be essential for the spindle
stability. A decrease in their concentration below a certain
threshold causes the spindle collapse [6,7], and their
total inhibition prevents bipolar spindle formation [8].
In addition, Eg5 motors have been shown to drive the
MT poleward flux [7] and homolog motors to induce the
formation of (interpolar) MT bundles [9].
Bipolar motors are composed of two connected units,

each one composed of two motor domains. Both units
can move simultaneously and independently on MTs [10].
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neering and Applied Sciences - 29 Oxford St., Cambridge, MA 02138,
USA.

These motors are able to crosslink MTs [9] and slide
them with respect to each other when they are in an
antiparallel configuration [10], like in the central region of
the spindle (fig. 1a,c). As a result, these motors produce
an outward force along the spindle axis and generate a
MT flux toward the poles [7]. Typical forces involved in
mitosis lay in the nanoNewton range [11]. Since individual
motors cannot exert forces larger than a few picoNewtons,
their collective action is required to ensure the stability of
the mitotic spindle. At metaphase, this dynamic structure
reaches a steady state with MTs of nearly constant length
undergoing permanent treadmilling [7,12] (usually referred
to as MT poleward flux), polymerizing at the + end and
depolymerizing at the − end.
The theoretical study of motors and MT mixtures has

been recently addressed using continuum coarse-grained
descriptions [13–16], which have elucidated their basic
self-organizing principles. However, the coupling between
force-dependent motor kinetics and local forces in self-
organized structures has not been addressed. In this letter,
we study the dynamic stability of antiparallel arrays of
MTs under the action of longitudinal forces, in the pres-
ence of molecular motors able to collectively hold the
structure by stochastically crosslinking the filaments. We
analyze the effects of the motor kinetics on the stability of
the structure, and show that several phenomena observed
in eukaryotic cell division appear naturally in our theoret-
ical approach. This suggests that interpolar microtubule
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Fig. 1: (a) Antiparallel array of MTs under the action of
a longitudinal force F . Buckled and non-buckled arrays are
shown. The minus and plus ends of MTs are depicted as
− and + respectively. Motors are represented by dots. In
the non-overlapping region of length L there are no antipar-
allel filaments and the motors are not subject to any force.
The motors in the overlapping region of length � sustain
the structure by crosslinking and sliding antiparallel fila-
ments. (b-c) Kinetic events of a motor in the non-overlapping
(b) and overlapping (c) regions. The velocities V and V̂ are
the crosslinking motor velocity and the MT poleward velocity,
respectively.

bundles may, in some conditions, control the stability of
the mitotic spindle.
In order to comprehend the basic physical mechanisms

controlling the stability of a spindle, we concentrate on
a simplified geometry. We consider a pair of antiparallel
MTs (or an antiparallel MT bundle) of fixed length,
under the action of an inward force F (fig. 1a). In the
steady state, there is a region of length � where the
antiparallel filament array overlaps (overlapping region).
The motors in this region can crosslink antiparallel MTs
and slide them in opposite directions, generating an
outward force that balances the total applied force F .
We assume the antiparallel MT sliding to be the only
mechanism generating the poleward MT flux, as suggested
experimentally [7]. The MT poleward flux requires a
MT treadmilling to maintain a steady state. Consistently
with the known activity of certain motor proteins in
modifying the MT net growth rate, we assume that the
polymerization and depolymerization rates adapt to the
sliding velocity, so that MTs keep a constant length. Out
of the overlapping region there are two regions of length
L (non-overlapping regions; fig. 1a) where motors cannot

apply forces to sustain the spindle. Since we concentrate
on the spindle stability and do not address the mechanisms
that determine F , L and �, we take them as given
parameters; we assume that they vary at time scales longer
than those involved in motor dynamics. A generalized and
more accurate description should take into account the
dynamics of �, F and L.
The motors in the non-overlapping region can be either

bound to a MT or freely diffusing in the bulk (fig. 1b). We
assume a constant bulk motor density, ρ3D (see footnote

1),
and consider the motors in the bulk to attach onto MTs
at a rate k3Db . Once bound to a MT, the dynamics of the
motor density, ρ(s, t), can be expressed as [17,18]

∂tρ(s, t)+ ∂sJ(s, t) =−k0uρ(s, t)+ k3Db ρ3D , (1)

where s is the position along the MT as measured from
the MT minus end and J(s, t) is the flux of bound motors.
For simplicity, we assume the bound motors to be in a
low density phase and write J(s, t) = ρ(s, t)(V0− V̂ ) in the
laboratory reference frame, with V̂ being the velocity of
MTs toward the poles and V0 being the actual velocity of
the bound motors with respect to the MT. Motors in this
region detach at a rate k0u.
In the central overlapping region, bipolar motors can

be either in a crosslinking state or in a bound state. In the
former state both motor units are attached to a pair of
antiparallel MTs, sliding them in opposite directions and
supporting a fraction of the total force F . As a result, the
crosslinking motors move with a force-dependent velocity
V (fig. 1c). Based on experimental observations [19], we
write a linear force-velocity relation, V = V0(1− fm/fs),
where fm is the load applied on the motor and fs its stall
force. We consider a number nc of independent crosslink-
ing motors to equally share the total applied force, so
that fm = F/nc. The velocity and kinetic rates become
collective quantities through their coupling to the force
shared among the total number of crosslinked motors.
As the poleward MT movement is driven only by these
motors, we identify V̂ = V (fig. 1c). Each unit of a motor
in the crosslinking state can detach at a force-dependent
rate which, consistently with experiments [19] we take of
the standard form ku(fm) = k

0
u exp(fmb/KBT ) (Kramers

theory [20]), where b is a length in the nanometer scale
characterizing the activated process and KBT the thermal
energy. After the detachment of one motor unit, the bipo-
lar motor is only bound to one MT and unable to apply
force. Such motor can either detach the bound motor unit
left at a rate k0u and diffuse into the bulk, or re-attach
the unbound motor unit at a rate kb and become a
crosslinking motor again. The motors in the bulk can also
attach to the MTs in the overlapping region at a rate k3Db .

1This is reasonable for typical spindle lengths (Ls ∼ 5µm) as
the motor bulk concentration equilibrates over time scales, of order
∼L2s/D� 1 s (D∼ 10µm2 s−1 being the diffusion constant of the
motors in the bulk), shorter than the time scale of the convective
motor movement along MTs, of order ∼Ls/V0 � 100 s, for typical
values of the motor velocity (V0 � 33 nm s−1 for Eg5 [10]).
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The relevant variables being the number of motors
sustaining the spindle, we neglect their spatial distribution
in the overlapping region. Accordingly, the equations for
the average number of crosslinking and bound motors, nc
and nb, respectively, read

dnc
dt
= kbnb− 2ku(nc)nc,

dnb
dt
= 2J(L, t)+ k3Db ρ3D�+2ku(nc)nc−

(
k0u+ kb

)
nb ,

(2)

where J(L, t) is the convective flux of bound motors
coming from a non-overlapping region. The value of
J(L, t) is determined by the solution of eq. (1). When the
motor processivity length, lp ≡ V0/k0u, is smaller than
the characteristic spindle length (lp�L (see footnote2)),
the flux J(L, t) is determined by a constant bound motor
density, ρ∞ = k3Db ρ3D/k

0
u, fixed by the exchange of motors

with the bulk. In this case the dynamics of nc and nb are
decoupled from the motor density close to the pole.
The existence of antiparallel MT arrays under an exter-

nal load F is determined by the balance between motor
attachment and detachment fluxes, as given by the steady-
state solutions, {nfc , nfb }, of eqs. (1), (2), which read

δ≡ γρ∞�
2F̃

=
exp
(
1/ñfc

)
(ñfc )

2

2l̃p

[
1− exp

(
−L̃f̃sñfc /l̃p

)]
/f̃s+ ñ

f
c

,

ñfb =
2 exp

(
1/ñfc

)
ñfc

γ
. (3)

We normalize forces by the characteristic detachment
force, KBT/b, so that F̃ ≡ Fb/KBT and f̃s = fsb/KBT .
The number of motors is normalized by the dimensionless
force, F̃ , leading to ñc ≡ nc/F̃ and ñb ≡ nb/F̃ . Lengths
are normalized by the overlap length, �, as L̃=L/� and
l̃p = lp/�. The asymmetry in motor attachment/
detachment events is characterized by γ ≡ kb/k0u.
There always exists a critical value, δm, below which

there are no solutions of eq. (3). This situation corresponds
to an attachment flux of crosslinking motors that cannot
balance their detachment flux, leading to the loss of all
crosslinking motors and inducing the spindle collapse.
Associated to the critical value δm, there is a minimum
number of crosslinking motors, ñmc , necessary to sustain a
spindle, whose value is given implicitly by

1+
[
ñmc

(
1+ L̃ñmc f̃s/l̃p

)
− 1
]
exp
(
−L̃f̃sñmc /l̃p

)
=

ñmc

[
2+ f̃s/(2l̃p) (ñ

m
c − 1)

]
. (4)

The actual value of δm is obtained by substituting ñ
f
c in

eq. (3) by the solution of eq. (4).
In order to determine the stability of the structures,

we perform a linear stability analysis of the solutions of

2Typical values for L are about several microns long for most cell
types, and for dimeric Eg5 lp < 100 nm [10,19].

Fig. 2: (a-b) Dependence of the critical value δc on L̃ and l̃p
in the limiting cases where (a) l̃p� 1 and (b) L̃� 1 (f̃s = 2).
(c) Possible spindle structures as the bulk motor density ρ3D
and the force F are varied (ρ03D ≡ 2δck0u/k3Db �γ sets the density
units). Above ρmin3D (F ), buckled (straight) stable spindles exist
for F >FB (F <FB). Below ρ

min
3D (F ) no stable spindles exist.

eq. (3). For L� lp it can be shown that the fluctuations
in ρ(s) are negligible and the spindle stability depends
only on the dynamics of nc and nb (see footnote

3).
Stable spindles exist above a critical value δc. The precise
expression for δc depends on the ratio between motor
attachment/detachment rates at vanishing load. For
γ > γc ≡ 2 exp (1/ñmc ) (1− ñmc ) /ñmc − 1, the transition
from an unstable array to a stable spindle corresponds to
a saddle-node bifurcation at δc = δm. On the other hand,
if γ < γc, this transition corresponds to a global bifurca-
tion (saddle connection [21]) at a value δc > δm. In the
particular case of vanishing processivity length (lp = 0),
δc = δm and ñ

m
c � 1 . Hence a finite processivity widens

the parameter range leading to stable spindles. Regardless
of the value of γ, the same qualitative scenario is observed
as δ is varied and we restrict the following discussion to
the regime γ > γc without loss of generality. The threshold

value, δc, is fixed only by L̃ and l̃p/f̃s (fig. 2a, b). In the
limit L� lp, the spindle stability is only determined by
the dynamics in the overlapping region, implying that the
spindle morphology and its stability are decoupled.
The parameter δ includes the dependence both on the

applied force, F , and the bulk motor density, ρ3D, and
appears as a convenient parameter to characterize the
spindle stability.
The existence of a critical value δc implies that for a MT

array under the action of a load, F , there exists a minimal
motor bulk concentration, ρmin3D , below which no stable
spindles are found. Using the definition of δ (eq. (3)), this

3For L� lp the stability scenarios remain qualitatively
unchanged.
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Fig. 3: Steady-state analytical solutions for (a) the number
of crosslinking motors and (b) the velocity of the crosslinking
motors (sliding velocity), as a function of the bulk density of
motors (f̃s = 2). The different curves represent different values
of l̃p in the limiting regime L̃� 1.

minimal motor density reads

ρmin3D =
2k0u
k3Db �

δcF̃

γ
. (5)

When ρ3D > ρ
min
3D the stable spindle may be either straight

or buckled depending on the value of the compressive
force, F . For forces below (above) the buckling force
FB = (π/2)

2B/L2 of the structure (B being its bending
rigidity), the stable spindle is straight (buckled). Note
that MT buckling would generate a normal component
of the force acting on the motors, which is neglected here.
This would, however, not change our qualitative results
concerning the existence of a threshold, but it would affect
its actual value.
In fig. 2c we plot the structures that can be found as the

bulk density of motors and the force applied on the spindle
are varied. Indeed, recent experimental observations on
the stability of mitotic spindles have shown that the
progressive inhibition of Eg5 motors leads to the collapse
of the spindle at a finite bulk motor density [7]. Moreover,
the total inhibition of homolog motors (Klp61F) has been
shown to prevent bipolar spindle formation in vivo [8].
The qualitative agreement between these observations and
our results suggests an important role of MT bundles and
kinesin-5 collective behaviour in the stability of spindles.
Above the threshold density ρmin3D , there is a finite

amount of crosslinking motors nc collectively holding the
spindle. In fig. 3a we plot the stable solutions of eq. (3) as
a function of the bulk concentration of motors. Increasing
values of ρ3D and � leads to larger motor attachment
fluxes, that result in a larger amount of crosslinking
motors. For a living cell in native conditions, the MTs
in the mitotic spindle are typically buckled [4]. Therefore,

the force applied on the MTs is of order FB which, for
single MTs (5µm in length) is about 1 pN. Using this
value for the force F , the number of crosslinking motors
leading to a stable antiparallel array turns out to be
very small (� 2). In this case fluctuations would dominate
and, although stable arrays could be transiently formed,
their lifetime would be too short (on the time scale of
motor detachment). Since the buckling force of a MT
bundle can be at least one order of magnitude larger4,
stable interpolar MT bundles require tenths of crosslinking
motors and provide robust spindles with lifetimes over
the time scale of the division process. Interpolar MT
bundles are indeed observed in several organisms during
cell division [9,22,23]. Both the existence of a threshold
and the increased spindle stability by bundle formation
are independent of the particular value of lp. However, as
discussed above, a larger motor processivity increases the
spindle stability.
The speed of the MT flux toward the poles is determined

by the MT sliding velocity, V̂ , given by the velocity of the
crosslinking motors. In fig. 3b we represent this sliding
velocity as a function of ρ3D, for different values of l̃p. It
decreases from its maximal value V0 as the bulk motor
density is decreased, and it is typically finite for the
minimal density ρmin3D at which the spindle collapses, as
observed experimentally [7]. At high motor concentrations
ρ3D� ρmin3D , the crosslinking motors move nearly at their
maximal velocity V0 and the MTs move poleward at
this velocity consequently. As the motors in the non-
overlapping regions move at velocity V0 with respect to
the MTs in the spindle (fig. 1b), they appear static in
the laboratory reference frame, explaining the apparent
motor stillness observed experimentally [24]. Our analysis
predicts that decreasing the bulk motor density ρ3D would
allow the observation of motor movement in the spindle.
The present approach highlights the importance of

force-dependent motor kinetics on the self-organization of
MTs and motors. In particular, we show that the motor
force-dependent kinetics is a key factor in the stability
of crosslinked MT bundles under applied load. In vitro
experiments with simplified systems combining kinesin-5
and MTs in controlled geometries would considerably
help understanding the properties of bundles sustained
by molecular motors. There are a number of predictions
that arise from our analysis which could be quantitatively
tested in such experiments. At a qualitative level, there
are several experimental observations in eukaryotic cell
division, namely the mitotic spindle collapse, the MT
poleward flux, the static appearance of motors in the
spindle, and the existence of MT bundles, which emerge
naturally in our description. Such qualitative agreement
suggests that, in some conditions, the loss of stability of
interpolar MT bundles may be responsible for the spindle
collapse.

4Assuming the bending rigidity of a MT bundle to scale lineraly
with the number of MTs, the buckling force of an interpolar MT
bundle may be of tenths of picoNewtons.
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